

ATCZ175 InterOP PROJECT

SDR Interference Emulator
Essentials

SIX Research Centre

Brno University of Technology

31.12.2020

Table of Contents

Scope of the document ... 3

1 SDR overview ... 4

2 SDR architecture ... 6

3 FPGA architecture ... 8

3.1 Analog to Digital Converter (ADC) interface (adc.sv) .. 9

3.2 ADC AXI controller (adc_ctrl_axi.sv) .. 9

3.3 ADC pattern checker (adc_ptrn_checher.sv) ... 10

3.4 RX Chain (rx_chain.sv) ... 11

3.5 TX chain (tx_chain.sv) .. 12

3.6 Digital to Analog Converter (DAC) interface (dac.sv) .. 13

3.7 Clock system (clock_system.sv) ... 13

3.8 Reset synchronization (sync_rst.v) ... 14

3.9 Trigger system for DAC and ADC ... 14

3.10 ZYNQ system (bd_wr.sv) .. 15

4 PCB ... 16

5 PetaLinux ... 17

6 Software source code ... 17

7 Getting started ... 17

8 Gitlab project file structures ... 18

Scope of the document
The goal of this document is to provide technical specification and documentation of the SDR

Interference Emulator (SDR-IE) for interference analysis. The document is divided into eight main

sections.

Section 1 defines the SDR-IE HW parameters and system properties.

Section 2 describes system architecture.

Section 3 insights into the FPGA firmware and describes all FPGA modules applied for signal

processing.

Section 4 links to zip file containing necessary PCB and BOM files with necessary assembly

instructions.

Section 5 characterizes ZYNQ operation system based on Petalinux.

Section 6 contains manual how to set Linux PC to work with SDR-IE.

Section 7 provides an overview of the SDR-IE project file structure including all necessary source files

to run SDR-IE.

Section 8 describes the Gitlab project file structure.

1 SDR overview
The SDR Interference Emulator is simple but at same time a powerful and modular Software Defined

Radio (SDR) platform developed by Brno University of Technology (BUT) Department of Radio

Electronics (DREL) under project Interop ATCZ-175. The SDR-IE provides wireless communications

designers an affordable SDR with unprecedented performance for developing communication

systems. The SDR-IE refines user experience making SDR prototyping more accessible by delivering

the optimum balance between simplicity and performance. It is ideal for a wide range of application

areas and as an alternative for widespread SDR produced by Ettus research and National instruments

(NI). The great benefit of SDR-IE is compatibility with Ettus/NI frontend transceivers such as WBX,

SBX1 and UBX1.

1 2021 under development

Interface

Power supply adapter 12V/4A mini power din

PC conectivity
USB 2.0 Type B

Ethernet 1G

conectivity
SD

Cannon DB 15

RF connectors
TX1

RX1

HW

ADC
250 MS/s

14/16 bits

DAC
250*** MS/s

16 bits

Tuning range WBX/UBX: 50-2200/10-6000 MHz

Architecture homodyne*

Standalone ✔**

one synthesis RX-TX ✔

FPGA ZYNQ Ultrascale+

FPGA type XCZU3EG-sfvc-784-1-e

Slice LUTs used/free 18185/70560****

Slice registers
used/free

27981/141120****

BRAM 31.5 MB

DSP 3528

processror

Quad-core ARM® Cortex™-A53

 MPCore™ up to 1.5GHz

Dual-core ARM Cortex-R5

MPCore™ up to 600MHz

SW

Partly OPEN SOURCE

MATLAB

C++

support InterOp

* frontend specific

** depends on application

*** internal up-sampling to 500MS/s

**** fpga is modular can be replaced by larger module

Table 1 SDR-IE features

2 SDR architecture
The SDR-IE architecture is shown on following block diagram.

Figure 1 SDR-IE block scheme

SDR-IE modular system has two main modules, RF front-end and digital processing module. RF front-

end module connectors on the main board are pin-compatible with National instruments or Ettus

research RF front-ends such as WBX, SBX, UBX etc., also custom front-end can be used, such as RFID

front-end. RF and sampling frequency can be referenced to an external 10MHz signal or use internal

reference. Main A/D data converters – ADC and DAC, are on the main board, supporting several

options depending on production variant. ADC supports up to 250Msps dual channel with 16bit

resolution. Dual channel main DAC is 16bit, with 500Msps sampling frequency and 2x oversampling

(data rate 250Msps). Auxiliary slow ADC and DAC channels are available for front-end control

purposes, such as output power sensing or gain control. Additional front-end digital control from

FPGA is available and fully configurable as GPIO, SPI or I2C.

Digital processing module is based on FPGA board TE0803 from Trenz Electronic, housing a Xilinx

Zynq Ultrascale+ FPGA. A The SDR-IE uses a 1Gbit Ethernet as main connectivity, allowing for up to

20Msps full-duplex continuous streaming. Faster sample rates can be used if the processing is done

on the FPGA or burst-mode can be used for short high speed record/replay functionality. On-board

DDR memory can be used as sample buffer (up to 2x512MB), providing up to 500ms of sample

storage at full sample rate (250Msps). Lower sample rates can be used to obtain longer recordings.

USB serial port is provided for software development and debugging. GPIO connector allows simple

connection to other measurement systems, providing triggering or other control signals. The SDR-IE

platform is powered from single 9-15V power supply and can be powered directly from battery for

field usage.

2.1 Firmware and software
The firmware three main parts:

1. The FPGA firmware: The description of internal FPGA connection in the FPGA chip and
settings of the Zynq processor. The firmware is used for control high-speed and low-speed
Analog-to-Digital (AD) and Digital-to-Analog (DA) converters and other necessary parts used

in the mother board or daughter board. As a development tool chain, the Xilinx Vivado
software in version 2018.3 [3] was used.

2. The Zynq processor firmware: The Zynq firmware controls Ethernet communication and
translation of the Telnet command to the FPGA. The software project is written in the C
language and as a tool chain we used Vivado SDK software.

3. The demo application software: In the current state as a PC application we used a standard
command line application. The SDR device is controlled by Telnet commands.

3 FPGA architecture
This section describes the overview schematics of FPGA architecture and provides insight into

Baseband signal processing. The top-module of the FPGA project is depicted by Figure 2. The SDR-IE

FPGA can be divided into four functional parts: receiver (RX), transmitter (TX), triggering, clocking

and sync system and ZYNQ Block Design (BD) wrapper. Each block consists of several submodules

described in sections below.

Figure 2 FPGA top module architecture

kradio_top_v0_1

ZYNQ_system

bd_wr : bd_wrapper

SPI_CTRL

tx_dma_axis

rx_dma_axis

drp_mmcm_axi

adc_ctrl_axi rstn_dsp

ena_dac_adc_data

adc_sample_period

DSP_clk

ADC
tx_dma_axis

rx_dma_axis

drp_mmcm_axi

adc_ctrl_axi
rstn_dsp

ena_adc_dac_data

adc_sample_period

SPI_CTRL

ADC

clocking_trigger_sync

sync_rst250 : sync_rst

ADC_clk

arst rst_o

rstn_o

clock_system_inst : clock_system

ADC

drp_mmcm_axi

rst clk125_ref

locked

ADC_clk

trigger_system_instance : trigger_system

ADC_clk

ena_in dac_data_ena

adc_data_ena

ADC

ena_adc_dac_data

drp_mmcm_axi
rst250

dac_data_ena

adc_data_ena

TX

tx_chain_inst : tx_chain

DSP_clk

dac_axis

tx_dma_axis

axi

arstn

dac_inst : dac

ADC_clk

Q

I

dac_axis

dac_data_ena

DAC

dac_data_ena

rstn_dsp

dac_axis

tx_dma_axis

DAC

RX

rx_chain_inst : rx_chain

DSP_clk

rx_dma_axis

adc_axis

axi

arstn

adc_inst : adc

ADC

ADC_clk

adc_axis

adc_sample_period

adc_data_ena

rst250

axi

ADC

adc_data_ena

rst250

adc_sample_period

rstn_dsp

adc_ctrl_axi

rx_dma_axis

adc_axis

rx_chain_axi

I

I

I

I

I

I

I

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

GPIO

DAC

ADC

SPI_CTRL

I2C

SPI

PLL_ctrl

LSADC

LSDAC

3.1 Analog to Digital Converter (ADC) interface (adc.sv)

Figure 3 ADC module inputs and outputs

The module translates ADC raw data in QDR mode synchronized with ADC clock to output AXI stream

bus in format of 16b Inphase (I) and 16b Quadrature (Q) component. The module contains input

buffers, controlled delay blocks, input serial/deserializers, pattern checker submodule, AXI liter

controller interface for configuration of entire blocks and also used for verification of data sample

validity because of uncertainty of data samples (described in 3.7).

3.2 ADC AXI controller (adc_ctrl_axi.sv)

Figure 4 ADC AXI controller inputs and outputs

The module is driven by ZYNQ commands and translates AXI commands to drive ADC verification

module and delay blocks for frame and data signals.

adc

adc_axis

ADC_CTRL_OVRB

ADC_CTRL_OVRA

ADC_B_FRAME_N

ADC_B_FRAME_P

ADC_B_D_N

ADC_B_D_P

ADC_A_FRAME_N

ADC_A_FRAME_P

ADC_A_D_N

ADC_A_D_P

adc_sample_period

adc_data_ena

clk_invalid

clk250

clk500

axi ADC_SYNC_P

ADC_SYNC_N

adc_ctrl_axi

idly_rdy

chck_done

chck_error_cnt

axi chck_rst

chck_sel

chck_ref

idly_load

idly_en_vtc

idly_value

3.3 ADC pattern checker (adc_ptrn_checher.sv)

Figure 5 Pattern checker inputs and outputs

This module verifies received data with a pattern set by ADC AXI controller. The output is the number

of error bits which is transmitted through ADC AXI controller into ZYNQ after checker signalizing the

done flag.

adc_ptrn_checker

frame_b

frame_a

des_b

des_a

chck_ref

chck_sel

rst

clk error_cnt

done

3.4 RX Chain (rx_chain.sv)

Figure 6 RX chain inputs and outputs

Figure 7 RX chain block scheme

This module synchronizes ADC data from ADC clock domain (clk125, clk125_ref, clk250, clk500) to

Digital Signal Processing (DSP) clock domain (clk2d, clk, clk2x) and integrates several baseband

processing blocks described by Figure 7. The ADC AXI stream signal inputs into synchronization block

(adc_axis_sync.sv). Synchronized signal inputs into complex multiplier (cmpy_0.sv) to be multiplied

by constant or sinewave generated by Direct Digital Synthesis (DDS) to process frequency shift

(dds_compiler_0.sv). In next stage two configurable Cascaded Integrator–Comb (CIC) filters for I and

Q path are implanted (cic_compiler_0.sv), then signal is filtered in first stage configurable Finite

Impulse Response (FIR) filter (fir_compiler_0.sv) following by second stage configurable FIR filter

(fir_compiler_1.sv). Filtered signal is downsampled by configurable downsampler (downsampler.sv).

The last block of RX chain module is packetizer providing translation between RX chain module and

Direct Memory Access (DMA) layer. Whole RX chain DSP is verified testbench (tb_rx_chain.sv) and

compared with simulations in MATLAB (rx_chian.m, plot_results.m), for more details see 8.

rx_chain

rx_dma_axis

adc_axis

axi

arstn

clk2x

clk

clk2d

3.5 TX chain (tx_chain.sv)

Figure 8 TX chain module inputs and outputs

Figure 9 TX chain block scheme

This module proceeds transmitter DSP basically reversed to the RX chain. The data inputs from DMA

layer to upsampler (upsampler.sv) with variable upsample factor. The upsampled signal is

synchronized to 500MHz DSP clock domain (clk2x) and filtered by two stages of configurable FIR

filters (fir_compiler_1.sv and fir_compiler_0.sv). The filtered signal is splitted into I and Q component

and separately filtered by configurable CIC filters. Filtered signal inputs into complex multiplier

(cmpy_0.sv) to be multiplied by constant or sinewave generated by DDS to process frequency shift

(dds_compiler_0.sv). Then the signal is synchronized with clock DSP signal (clk). Whole TX chain DSP

is verified testbench (tb_tx_chain.sv) and compared with simulations in MATLAB (tx_chian.m,

plot_results.m), for more details see 8.

tx_chain

dac_axis

tx_dma_axis

axi

arstn

clk2x

clk

clk2d

3.6 Digital to Analog Converter (DAC) interface (dac.sv)

Figure 10 DAC interface module inputs and outputs

This module translates digital AXI stream bus in format of 16b I and 16b Q component data samples

into form to be accepted by the DAC. The module contains output buffers, output

serial/deserializers, axis data checker (axis_checker.sv) to verify the consistency of output data

during development and input FIFO proceeding synchronization of data from DSP clock domain into

ADC clock domain.

3.7 Clock system (clock_system.sv)

Figure 11 Clock system inputs and outputs

The base of this block is Mixed-Mode Clock Manager (MMCM) providing a method to dynamically

change the clock output frequency, phase shift. The block is implemented because of uncertainty of

data samples (DA0, DB0, …DA3, DB3) and frame signal (DAFRAMEM, DBFRAMEM, DAFRAMEP,

DBFRAMEP) synchronization. The effect is caused by different length of data and frame paths

resulting in different delay between signals. However, the ADC interface contains the configurable

delay blocks, the uncertainty is introduced. Thus, the phase control of the frame signal is necessary.

The clock system block is driven by ZYNQ system in order to reach zero error bits indicated by ADC

data checker output. The data-frame signaling is depicted by Figure 12.

dac

Q

I

dac_axis

dac_data_ena

clk125

clk500 DAC_D_P

DAC_D_N

DAC_DCI_P

DAC_DCI_N

DAC_FRAME_P

DAC_FRAME_N

clock_system

drp_mmcm_axi

rst

ADC_B_DCLK_N

ADC_B_DCLK_P

ADC_A_DCLK_N

ADC_A_DCLK_P clk500

clk250

clk125

clk125_ref

locked

Figure 12 Data - Frame signaling

3.8 Reset synchronization (sync_rst.v)

Figure 13 Reset synchronization block inputs and outputs

The MMCM and PLL Dynamic Reconfiguration datasheet is not specific if the locked output of the

MMCM signal is synchronous with MMCM clock. Therefore, the synchronization of the lock signal

into clk125 domain is necessary. The synchronization routine operates with asynchronous set and

synchronous release. The reset signal can occur without running clock.

3.9 Trigger system for DAC and ADC

Figure 14 Trigger system inputs and outputs

This module provides triggering of the DAC and the ADC interface.

sync_rst

arst

clk rst_o

rstn_o

trigger_system

ena_in

clk125 dac_data_ena

adc_data_ena

3.10 ZYNQ system (bd_wr.sv)

Figure 15 Block design ZYNQ subsystem input and outputs

Figure 16 Block design scheme of ZYNQ subsystem

ZYNQ Block Design (BD) system is the core of the entire SDR system. The ZYNQ control all

configurable modules in the FPGA (see Table 2) and also control other peripherals such a SPI, I2C,

Low Speed (LS) ADCs, LSDACs, GPIO. The Block Design also implements DMA peripheral to direct

memory access between Petalinux operating system running on ZYNQ processor and FPGA. For more

details see 5.

bd_wrapper

SPI_CTRL_MISO

tx_dma_axis

rx_dma_axis

drp_mmcm_axi

adc_ctrl_axi clk2d

clk

clk2x

rstn_dsp

ena_dac_adc_data

adc_sample_period

ADC_CTRL_RST

SPI_CTRL_SCK

SPI_CTRL_MOSI

SPI_CTRL_ADC_CSn

SPI_CTRL_DAC_CSn

SPI_CTRL_PLL_CSn

Configurable modules

Module
name

AXI lite controller
name

Description

clock_system drp_mmcm MMCM system for generation main system clocks

ad
c

adc_ctrl_axi

IDELAYE3 ports

write and read to adc_ptrn_checker ports

read IDELAYCTRL port

rx
_c

h
ai

n

rx
_c

h
ai

n
_c

tr
l_

ax
i

DDS control

CIC control port

FIR0 control port

FIR0 reload port

FIR1 control port

FIR1 reload port

Downsampler factor port

DDS enable

CIC enable

tx
_c

h
ai

n

tx
_c

h
ai

n
_c

tr
l_

ax
i

DDS control

CIC control port

FIR0 control port

FIR0 reload port

FIR1 control port

FIR1 reload port

Upsampler factor port

DDS enable

CIC enable

Table 2 Configurable modules

4 PCB
All sources of the PDB design, BOM, and assembly instructions are available at in the file
http://www.radio.feec.vutbr.cz/interop/sdr/sdr_ie_fabrication.zip. Inputs for manufacturing at the
provider of your choice are available in the file yyyyy.zip. For options on getting an assembled device,
please contact us at urel@feec.vutbr.cz to assist you with further steps.

4.1 Hardware schematics
Schematics of the SDR emulator are available at

http://www.radio.feec.vutbr.cz/interop/sdr/schematics.pdf. Table 3 describes each page of the

schematics.

Table 3: Structure of the schematics documentation

page Description

1 SDR mother board system block schematics

2 TE0803 FPGA module – FPGA data connection

3 Block schematics of daughter board subsystem

4 Daughter board Tx connectors

5 Daughter board Rx connectors

6 High-speed DAC

7 High-speed ADC

8 Low-speed DAC

http://www.radio.feec.vutbr.cz/interop/sdr/sdr_ie_fabrication.zip
mailto:urel@feec.vutbr.cz
http://www.radio.feec.vutbr.cz/interop/sdr/schematics.pdf

9 Low-speed ADC

10 Clocks and PLL

11 TE0803 FPGA module – processor data connection

12 Ethernet PHY

13 General purpose inputs and outputs

14 USB universal serial receiver and transmitter

15 TE0803 FPGA module – FPGA configuration and control

16 TE0803 FPGA module – power connections

17 Block schematics of powering subsystem

18 Power input

19 Main 12 V to 3.3 V step-down regulator

20 Main digitally-controlled power switch

21 Step-down regulator 12 V to 6 V for powering Daughter board

22 Step-down regulator 12 V to 3.8 V for powering linear regulators

23 Step-down regulator 12 V to 1.8 V for powering digital circuits

24 Low noise linear regulator 3.3 V for powering sensitive analog circuits

25 Universal linear regulator – specified by assembly variant

26 Power filter

27 Ferrite bead power filters

5 PetaLinux
OS Petalinux source code is available at:

http://www.radio.feec.vutbr.cz/interop/sdr/petalinux_srcs.zip.

6 Software source code
Software source code is available at: http://www.radio.feec.vutbr.cz/interop/sdr/sw_srcs.zip.

7 Getting started
To get started with SDR-IE check document Getting started available at:

http://www.radio.feec.vutbr.cz/interop/sdr/SDR-IE_getting_started.pdf. The Linux USB live image to

your PC is compressed in http://www.radio.feec.vutbr.cz/interop/sdr/kradio-live-x86_64.zip.

http://www.radio.feec.vutbr.cz/interop/sdr/petalinux_srcs.zip
http://www.radio.feec.vutbr.cz/interop/sdr/sw_srcs.zip
http://www.radio.feec.vutbr.cz/interop/sdr/SDR-IE_getting_started.pdf
http://www.radio.feec.vutbr.cz/interop/sdr/kradio-live-x86_64.zip

8 Gitlab project file structures
This section describes the main project trunk (https://gitlab.com/jakral/kradio_fw.git) including

documentation of entire HW and SW part used to assembly SDR-IE, source files to generate FPGA

image, source files to compile Petalinux operation system for ZYNQ, source files to compile PC app to

communicate with the SDR-IE. MATLAB files to filter design of the Xilinx FIR IP cores and scripts for

results evaluation of the interference rejection test based on the ISO/IEC 18046-3:2019(E). (see

INTERFERENCE REJECTION MEASUREMENT REPORT document).

├── agenda
├── docs Documentations, datasheets and schematics
│ ├── acrios
│ ├── datasheets
│ │ ├── Ettus
│ │ │ ├── SBX
│ │ │ └── WBX
│ │ └── Xilinx
│ ├── drafts
│ ├── schematics
│ └── workshop_elinux
├── matlab Measurements with SDR-IE according to ISO/IEC 18000-63:2015
│ ├── rfid_response
│ └── rx_tx_analysis Measurements results with analysis scripts
├── pc_apps
│ └── udp_tester
└── vivado
 ├── ip_repo
 │ └── axi_drp
 │ ├── rtl
 │ └── xgui
 └── kradio_fw Main Vivado FPGA project
 ├── kradio_fw.sdk SDK projects
 │ ├── ether_test
 │ │ └── src
 │ ├── ether_test_bsp
 │ ├── fsbl
 │ │ └── src
 │ ├── fsbl_bsp
 │ ├── gpio_test
 │ │ └── src
 │ ├── gpio_test_bsp
 │ ├── kchdr_server
 │ │ └── src
 │ ├── libscpi
 │ │ ├── dist
 │ │ ├── inc
 │ │ ├── src
 │ │ └── test
 │ └── scpi_server
 │ └── src
 └── kradio_fw.srcs FPGA sources
 ├── constrs_1 Constraint XDC files
 │ └── new
 ├── sim_models Simulation sources
 ├── sim_parts Simulation sources
 ├── sim_top Simulation sources
 └── sources_1
 ├── bd Block design sources
 ├── hdl HDL sources
 └── ip IP core sources

https://gitlab.com/jakral/kradio_fw.git

