
RFNoC-Interference Manual

David Haberleitner

December 16, 2020

Contents

1 Introduction 1
1.1 Concepts . 2
1.2 Interference Representation 2
1.3 Implementation . 3

2 Hardware 5

3 Interference Generation Software 5
3.1 Installation . 5

3.1.1 Install XML descriptions of the custom RFNoC blocks 7
3.1.2 Flashing the custom FPGA image 7

3.2 Help . 8
3.3 Example . 8

4 Scenario File Formats 9
4.1 CSV . 9
4.2 Binary file . 10

5 Interference Acquisition 10

1 Introduction

This guide shall provide a basic understanding for the RFNoC signal pro-
cessing chains used to acquire and generate broadband interference on the
X300-series SDRs. Furthermore the developed host software and its proto-
cols and file formats are described in detail. If you only need instructions for
the software daemon you can skip to Section 3.

1

Ettus provides access to the internal parts of the FPGA image through
the RFNoC standard. This is a set of interfaces and protocols developed by
Ettus. The RFNoC system is based on blocks that have to implement these
interfaces and protocols. The whole structure is very dynamic as any block
can be connected to every other block on the FPGA. The concept of moving
digital signal processing to the FPGA using the RFNoC framework is used
mainly for two reasons:

• Conserve Bandwidth between host and SDR (use slower 1GbE instead
of 10GbE)

• Reduce system load on the host

The interfaces between the host and SDR are realized as so-called stream-
ers.

1.1 Concepts

1.2 Interference Representation

In this application interference is represented in the frequency domain. The
usable bandwidth is divided into N bins which are described by a magnitude
and phase value. This coefficient set is called “line” in the following text and
can be replayed an arbitrary amount of times to decrease the amount of data
transfered between host and SDR. The phase can take on a fixed value for
all repeats or random values that change on every replay. This is illustrated
in the three blocks in Figure 1.

2

A11, φrand A12, φrand A13, φrand A14, φrand

A11, φrand A12, φrand A13, φrand A14, φrand

A11, φrand A12, φrand A13, φrand A14, φrand

A21, φ21 A22, φrand A23, φ23 A24, φrand

A21, φ21 A22, φrand A23, φ23 A24, φrand

A31, φ31 A32, φ32 A33, φ33 A34, φ34

A31, φ31 A32, φ32 A33, φ33 A34, φ34

A31, φ31 A32, φ32 A33, φ33 A34, φ34

A31, φ31 A32, φ32 A33, φ33 A34, φ34

frequency

time

Figure 1: Exemplary illustration of interference generation with N=4 fre-
quency bins.

1.3 Implementation

Host Streamer Vecsrc IFFT

Windowing DUC Radio

Configuration of coefficients,
no continuous traffic

Figure 2: Flow-graph for generating interference patterns on the USRP.

The main parts of the flow graph for interference generation can be seen
above. The Vecsrc block continuously repeats spectral coefficients for the
FFT and expects coefficient sets as its input. The streamer in this case is
not operating in a continuous manner. Instead it sends packets of coefficients
to the block. Configuration over register interfaces was also considered and

3

implemented, but transmission speed was an issue as described later.
The Vecsrc block buffers all incoming coefficient sets in an internal FIFO. It
outputs the coefficients n-times and then it moves on to the next set.
Then the repeating coefficients are fed into the inverse FFT. This block al-
ready exists in the RFNoC ecosystem.
The resulting signal is then windowed by a special block that keeps a copy
of the last vector to fade the two vectors in/out.

Figure 3 shows the output stage of the Vecsrc block. It has two lookup
tables for phase and magnitude values. Depending on the phase selection it
either uses a random value or the selected value.

current coefficient
from FIFO

Magnitude
LUT

256 · 16bit

Complex
Multiplier
(pipelined)

Phase
LUT

256 · 32bit

Phase
Mux

Random
number
generator

phase value
from FIFO

output

/
8 bit

/
8 bit

Figure 3: Structure of the Vecsrc block with random phase generation and
logarithmic coefficient lookup.

The user has 3 different lookup-tables/configuration arrays to manipulate
the workings of the DSP chain:

• Magnitude lookup-table: Mainly used for converting a logarithmic rep-
resentation to linear complex samples

4

• Phase lookup-table: Phase offset that can be applied to each carrier
(in a random or user defined way)

• Window function: This real function is used to fade in the new block
from the FFT time signal while fading out the old block.

Each of these three memories can be configured at startup of the daemon.
The configurations are provided as CSV files and passed to the program via
the command line. In addition a scenario file has to be provided. This
file represents the magnitude selection and the time each mask is replayed.
Additionally phase can also be manitpulated.

There are three possible ways the phase of each carrier can be configured:

No additional phase values are provided for the current set Each car-
rier gets a random phase from the entries 1-255 in the phase table. This
selection changes with every replay/FFT block.

Phase value 0 provided Does behave exactly the same way as above.
(Needed to have some carriers at a random phase while others in the
same set are fixed)

Phase value 1-255 provided Each value is directly used to select the
phase from the internal table.

2 Hardware

As explained before, the system is based on the X300 series of SDR by Ettus
Research. For the front-end the UBX-160 daughterboards are used. This
provides a usable bandwidth of up to 160MHz, so, for instance, the 2.4GHz
ISM band is easily covered. Basically the front-end is not important to
the workings of the interference generation/acquistion. It just affects the
maximum bandwidth and RF performance.

3 Interference Generation Software

3.1 Installation

UHD 3.15-LTS is a prerequisite for the interference daemon. Installation
is described in detail at https://files.ettus.com/manual/page_build_
guide.html

5

https://files.ettus.com/manual/page_build_guide.html
https://files.ettus.com/manual/page_build_guide.html

The following commands should checkout the right branch, build and
install UHD into the default directory:

1 git clone https://github.com/EttusResearch/uhd.git
2 cd uhd
3 git checkout UHD-3.15.LTS
4 cd host
5 mkdir build
6 cd build
7 cmake ..
8 make -j$(nproc)
9 sudo make install

After installing UHD you can use the usrp_image_loader tool to install
the custom image: First navigate to the directory containing the interference
daemon:

1 cd src/software/interference/

Create the build directory and change into it:

1 mkdir build && cd build

Now we can generate the build files using cmake:

1 cmake ..

If you installed UHD in a non-standard directory you need to specify it
using

1 cmake -DCMAKE_INSTALL_PREFIX=~/uhd_dir ..

Finally we can build the daemon:

1 make

Now the binary for the interference daemon should be found in the build
directory.

6

3.1.1 Install XML descriptions of the custom RFNoC blocks

For UHD to recognize the custom RFNoC blocks we need to install the
corresponding XML files. This is done using the following commands:

1 cd rfnoc_interference/rfnoc-interference
2 mkdir build
3 cd build
4 cmake ..
5 make
6 sudo make install

3.1.2 Flashing the custom FPGA image

Flash the custom interference image to the X300 using the following com-
mand:

1 uhd_image_loader --args="type=x300,addr=192.168.14.2"
--fpga-path rfnoc_interference/images/interference.img↪→

Once the new FPGA image has been written to flash, the X300 has to
be power-cycled, to apply the new image. After flashing the image you can
test if all the blocks are available with the following command:

1 uhd_usrp_probe --args="type=x300,addr=192.168.14.2"

You should see the following RFNoC block (our custom ones and the
ones provided by Ettus):

1 ...
2 | | | * DmaFIFO_0
3 | | | * Radio_0
4 | | | * Radio_1
5 | | | * DUC_0
6 | | | * vecsrc_0
7 | | | * FFT_0
8 | | | * fadewin_0
9 | | | * FIFO_0

If the uhd_usrp_probe program shows unidentified blocks (block_x) uhd
can’t find the xml descriptions of the blocks, which should have been installed
in Section 3.1.1.

7

3.2 Help

1 ./interference --help
2 UHD interference daemon allowed options:
3 --help display this help message
4 --rate arg (=200000000) sample rate the DSP chain

operates at↪→

5 --phase_file arg (=phase.csv) csv file for phase lookup
6 --mag_file arg (=mag.csv) csv file for magnitude lookup
7 --win_file arg (=win.csv) csv file containing the window

coefficients↪→

8 --coeff_file arg (=coeff.csv) csv file containing the
interference scenario↪→

9

10

11 This application reads scenario files and generates
interference directly on the x300 series SDRs.↪→

3.3 Example

This section describes the workflow to use interference generation on the
X300 board to paint an image in the waterfall spectrum.

Now we can go on and prepare the configuration files for the window,
magnitude and phase table. These configurations are provided a CSV file
which can be generated using the following commands from the src/software/scripts
directory:

1 python generate_phasetable.py ../res/phase.csv
2 python generate_magtable.py -m -60 -f ../res/mag.csv
3 python generate_window.py -n 64 -f ../res/mag.csv

This generates a phase table with unit vectors all around the unit circle,
magnitude values from 0dBFs to -60dBFs. The window is set to only occupy
64 of the N=1024 values for a faster transition (see Figure XXXX).

Finally we can generate our scenario from a picture using:

1 python waterfall_image.py -i ../res/emce.jpg -d 3 -r 200e6 -o
../res/emce.csv↪→

Now the interference daemon can be started:

8

1 ./interference --coeff_file ../../scripts/emce.csv --win_file
../../res/win.csv --phase_file ../../res/phase.csv

--mag_file ../../res/mag.csv
↪→

↪→

Figure 4: Waterfall plot of the spectrum at 1GHz with a bandwidth of
1.5MHz.

4 Scenario File Formats

The interference daemon supports two different file formats as described in
the next sections.

4.1 CSV

The advantages of the CSV file format are that it can be generated from
many frameworks that don’t support binary file operations and it can also
be manipulated in a text editor.
The big disadvantage is that parsing takes many resources. This effect can
be observed when operating at very short repetition times as IO/parsing
can’t keep up and the UHD is showing underflows (U characted gets printed
to stdout). In this case it is highly recommended to switch to the binary
file format.

9

1 phase,0,1,10,0,...,0
2 mag,100,150,150,0,...,0,500

The CSV file above describes a single spectral configuration that gets
repeated 500 times. The phase entry configures all bins except bin 2 and 3
to random phase values. As explained before, if the phase line is omitted,
all bins are configured to random phase. Bin 2 is fixed to the value found
in the phase LUT at address 1 and the phase of bin 3 is determined by the
entry at address 10. The mag entry assigns power to bins 1, 2, and 3. The
last value determines the number of repeats.

4.2 Binary file

The interference daemon also supports a binary file format for efficient stor-
age and parsing. As large chunks of the file can be directly copied to memory,
performance is a lot better than when using CSV files.

5 Interference Acquisition

10

	Introduction
	Concepts
	Interference Representation
	Implementation

	Hardware
	Interference Generation Software
	Installation
	Install XML descriptions of the custom RFNoC blocks
	Flashing the custom FPGA image

	Help
	Example

	Scenario File Formats
	CSV
	Binary file

	Interference Acquisition

