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Abstract

We present an abstract definition of a nonlinear scattering operator in
L2 spaces which is based on the assumption that there is some nonlinear
operator in time domain which describes the input output relationship of the
system under consideration. This scattering operator coincides in a certain
sense made precise in this work with the classical scattering matrix resp. S
parameters in the absence of nonlinearities. It is determined by convolution
with an in general not square summable sequence which depends nonlinearly
on the input. Several examples are given where this scattering sequence is
calculated. The notion of the scattering operator is extended to an 2 port
system where the extension to an general n - port system follows similar
lines.

The main advantage of this operator is that it is does not depend on any
linearization process, is not defined via Volterra series techniques and can
exist even globally. This is demonstrated by an application to the nonlin-
ear Schrödinger equation. In the case of a Kerr nonlinearity we get the be-
havioural equation in frequency domain in closed form and solve the problem
of constructing a nonlinear scattering matrix for this given behavioural equa-
tion. This matrix is finally regularized such that it depends continously on
the input data. Linearization of the regularized nonlinear scattering matrix
leads to the X parameters for the nonlinear Schrödinger equation.
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1 Nonlinear Scattering

1.1 The Scattering Operator associated to a Nonlinear Operator on
L2

In the discussion of this section we focus on L2 (−π, π) the space of possible
complex valued square integrable functions on [−π, π]. For any other interval than
[−π, π] we can obtain the same conclusions by a change of variable.

Let

F :
dom (F) ⊂ L2 (−π, π)→ L2 (−π, π)

ψ 7→ F (ψ)

be a nonlinear operator on L2 (−π, π) with domain dom (F) and denote by ψ̂ the
l2 (Z) sequence of Fourier coefficients 1

2π

∫ π
−π ψ(t)e−int dt of the L2 function ψ.

Now how are the input spectrum a = ψ̂ and output spectrum b = F̂ (ψ)
related? In case the operator F is a bounded linear operator this can be answered
easily and is well known.

In fact using the Fourier series representation of ψ, continuity, and linear-
ity of F we obtain b = Sa where the linear scattering matrix S is given by
S =

(
F̂ (eint) (k)

)
k,n∈Z

. For example the linear and bounded shift operator by t0

diagonalizes in the frequency domain and S is given by S = diagn∈Z
(
eint0

)
.

To proceed in the nonlinear case the idea is to factorize the function F (ψ)

in the form F(ψ)
ψ ψ = MF (ψ)ψ and to find an operator representation for the

multiplication with the function MF (ψ) in frequency domain.
To be more precise suppose mF (ψ) = M̂F (ψ) exists in the sense of distribu-

tions. Then on the domain

DF = dom (SF (ψ)) =
{
v ∈ l2 (Z) | mF (ψ) ∗ v ∈ l2 (Z)

}
we define the linear operator SF (ψ) = mF (ψ) ∗, where ∗ denotes discrete convo-
lution, i.e. (mF (ψ) ∗ v) (n) =

∑
l∈ZmF (ψ) (l) v (n− l) for all n ∈ Z. Observe

that DF is non empty since always a ∈ DF . Moreover by construction we have
b = SF (ψ) a where a and b are defined as above.

Next denote byL
(
l2
)

the set of not necessarily everywhere defined linear oper-
ators on l2 (Z) and for x ∈ l2 (Z) define Lx

(
l2
)

= {T ∈ L
(
l2
)
| x ∈ dom (T )}.

Two operators T1, T2 ∈ Lx
(
l2
)

are called equivalent, T1 ∼ T2 ⇔ T1x = T2x ⇔
∃N ∈ Lx

(
l2
)

with T2 = T1 + N and x ∈ Ker (N) and it is easily
checked that this defines indeed an equivalence relation on Lx

(
l2
)
. Let us denote

the set of all equivalence classes Lx
(
l2
)
/ ∼ by πx and equivalence classes by [·]∼.

Finally we define the scattering operator as follows. Set

dom (SF ) = {ψ ∈ dom (F) | mF (ψ) exists in the sense of distributions} .

Then the scattering operator SF is defined by

SF :
dom (SF )→ ∪ψ∈dom(SF )πψ̂
ψ 7→ [SF (ψ)]∼ .
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To avoid an overboarding notation we omit an explicit notation of equivalence
classes but should have in mind that the symbol SF (ψ) actually represents an
equivalence class of linear operators.

Remark 1. Observe that the matrix representation of SF (ψ) with respect to the
canononical basis in l2 (Z) is given by the double infinite Laurent matrix

SF (ψ) =



. . . . . . . . . . . . . . . . . . . . .

. . . m0 m−1 m−2 m−3 m−4
. . .

. . . m1 m0 m−1 m−2 m−3
. . .

. . . m2 m1 m0 m−1 m−2
. . .

. . . m3 m2 m1 m0 m−1
. . .

. . . m4 m3 m2 m1 m0
. . .

. . . . . . . . . . . . . . . . . . . . .


,

where we have set m = mF (ψ) for short. mF (ψ) is called the F adapted scatter-
ing sequence or only the scattering sequence.

Example 1.1. Suppose that the basis functions eint, n ∈ Z, are elements of
dom (F). Then by definitionmF

(
eint
)

is an l2 (Z) sequence and therefore the ba-
sis functions are in the domain of the scattering operator SF and moreover SF (ψ)
defines a bounded linear operator from l2(Z) into l∞ (Z) with

‖SF
(
eint
)
‖B(l2,l∞) ≤ ‖F

(
eint
)
‖L2

by the Cauchy Schwarz inequality.
Next suppose that F is bounded and linear s.t. the linear scattering matrix

exists. Then by construction S ∼ SF (ψ) for all ψ ∈ dom (SF ). So actually we
are dealing only with the equivalence class [S]∼ and SF is actually a constant map.
Moreover though SF is not defined on the whole L2 nethertheless it determines S
uniquely since as is easily checked the columns of the S matrix are obtained by
SF
(
eint
)
δn where δn denotes the n-th canonical basis vector

δn (k) =

{
1 if k = n
0 if k 6= n.

Consequently the operator SF extends the notion of the scattering matrix to the
nonlinear case including infinite dimensions.

Example 1.2. Suppose ψ ∈ dom (F) satisfies F (ψ) = λψ for some λ ∈ C. Then
ψ ∈ dom (SF ) and by definition SF (ψ) = λδ0∗ = λid, where id is the identity
map in l2(Z). For the bounded linear shift operator F (ψ) (t) = ψ (t+ t0) the
basis function eint, n ∈ Z, is an eigenfunction with eigenvalue eint0 . Therefore by
Example 1.1 the columns of the linear scattering matrix are given by eint0δn resp.
S = diagn∈Z

(
eint0

)
as mentioned at the beginning of this section.
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The following example demonstrates why we have to deal with equivalence
classes.

Example 1.3. Again consider the shift operator but now applied to the function
ψ (t) = cos t. From Example 1.2 we know that SF (cos (·)) ∼ S = diagn∈Z

(
eint0

)
.

This is now checked directly. By the addition theorem for the cosine we have
SF (cos (·)) =

(
cos t0δ0 − sin (t0) t̂an t

)
∗ with

t̂an t (n) =


−i (−1)

n
2 if n < 0 is even

i (−1)
n
2 if n > 0 is even

0 if n = 0 or n is odd.

Applying the input spectrum a = ĉos t = 1
2δ−1 + 1

2δ1 we obtain SF (cos t) a = Sa,
i.e. SF (cos t) ∼ S.

Example 1.4. Next we investigate the non linear operatorF (ψ) (t) =
√

1− |ψ (t)|2

with dom (F) = {ψ ∈ L2 (−π, π) | |ψ (t)| ≤ 1]}. Since F
(
eint
)

= 0, n ∈ Z, we
note that eint ∈ dom (SF ) with SF

(
eint
)

= 0.
Moreover cos t ∈ dom (F) with F (cos t) = |sin t| and in addition cos t ∈

dom (SF ) with SF (cos t) = mF (cos t) ∗, where

mF (cos t) (n) =

{
1

2πs |n|−1
2

if n is odd

0 if n is even,

with sn = (−1)n4
(

1 + 2
∑n

k=1
(−1)k

1−4k2

)
. Thus SF is a non constant map which

can only happen because F is nonlinear.

Example 1.5. Let F be defined as in the last example. There are functions with
non zero mean value which belong to dom (SF ), e.g take the constant function
ψ ≡ 1 in the last example.

On the other side it can happen due to a non zero mean value ofψ ∈ L2 (−π, π)
that ψ is not an element of dom (SF ). However we can remove this mean value
c = 1

2π

∫ π
−π ψ (t) dt from ψ and obtain a slight modification to the above discus-

sion.
To be more precise we have to indroduce the c modified scattering sequence

mc
F (ψ) =

(̂
F(ψ)
ψ−c

)
and the scattering operator ScF with ScF (ψ) = mc

F (ψ) ∗. The
relation between input spectrum a and output spectrum b is then given by

b = ScF (ψ) a− c ·mc
F (ψ) .

For example this is the case for ψ (t) = 1+cos t
2 = cos2

(
t
2

)
, where ψ ∈ dom (F)

with F (ψ) (t) =
√

1− cos4
(
t
2

)
, c = 1

2 , and ψ ∈ dom (ScF ) with ScF (ψ) =
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mc
F (ψ) ∗, where

mc
F (ψ) (n) =

2

π

 ce|n|
2

√
2 + de|n|

2

ln
(
1 +
√

2
)

+ c0 if n is even

co|n|−1
2

√
2 + do|n|−1

2

ln
(
1 +
√

2
)

if n is odd,

with firstly c0 = (−1)
n
2

√
3

2

(
ln
(
5− 2

√
6
))

and

cen = −2 (−1)n
n−1∑
k=0

(−1)k c2k+1,

con = (−1)n
(

1 + 2

n∑
k=1

(−1)k c2k

)
with

cn = (−1)n
(

1− 2n

n∑
k=1

(−4)k−1 1

k

(
n+ k − 1

2k − 1

)
ak

)
, where (1)

an =
1

n+ 1
+ (−1)n

(
1
2

)
n

2 (n+ 1)!

n∑
k=1

(−1)k
(k − 1)!(

1
2

)
k

.

Secondly

den = (−1)n
(

1− 2

n−1∑
k=0

(−1)k d2k+1

)
,

don = (−1)n
(

1 + 2

n∑
k=1

(−1)k d2k

)
with

dn = (−1)n
(

1− 2n
n∑
k=1

(−4)k−1 1

k

(
n+ k − 1

2k − 1

)
bk

)
, where (2)

bn = (−1)n
(2n− 1)!!

2n (n+ 1)!
.

Here (·)n denotes the Pochhammer symbol. Observe that the output spectrum is
obtained by

b =
1

π

(
c|n|
√

2 + d|n| ln
(

1 +
√

2
))

n∈Z
,

where cn and dn are defined as in Equation 1 resp. 2.
However the main point is that b can be obtained by linearly mapping the

input spectrum a to the output spectrum b by the scattering operator SF (ψ) as in
the linear case.
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Figure 1: Scattering sequence of Example 1.5

Figure 2: Comparism of output spectra of Example 1.5
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Figure 3: F (ψ) of Example 1.5 and its Fourier series approximation

1.2 Two Port Nonlinear Scattering Operator

Our next task is the extension of the scattering operator introduced in the last Sub-
section 1.1 to multiple ports. For sake of simplicity this is done only for the case
of two ports. However the extension to more than two ports should be obvious.
The state space consists now of two copies of L2 (−π, π), i.e. ψ ∈ L2 (−π, π)2 =
L2 (−π, π)⊕ L2 (−π, π).

Next denote by M2 (X) or simply M2, if the setX is clear from the context, the
set of 2× 2 matrices with entries in X . The nonlinear operator F is now replaced
by the matrix valued nonlinear operator

F :
dom (F) ⊂ L2 (−π, π)2 →M2

(
L2 (−π, π)

)
ψ 7→

(
F11 (ψ) F12 (ψ)
F21 (ψ) F22 (ψ)

)
.

Here

Fik :
dom (Fik) ⊂ L2 (−π, π)2 → L2 (−π, π)

ψ 7→ Fik (ψ)

i, k = 1, 2, are itself nonlinear operators with

dom (Fik) = {ψ ∈ L2 (−π, π)2 | Fik(ψ) ∈ L2 (−π, π)}

and dom (F) = ∩2
i,k=1dom (Fik). The interpretation of Fik is as follows.
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F11 describes the reponse at port 1 due to the presence of the input signal ψ1 at
port one , the first component of ψ. However since this response could be different
for a different input signal ψ2 at port 2, the second component of ψ, F11 must
be considered as a function of ψ. In this sense ψ2 is considered as a parameter
function for F11 . Similarly F12 describes the (cross) response at port 1 due to the
presence of the input signal ψ2 at port two. Again this response could be different
for a different input signal ψ1 at port 1. Thus F12 must be considered as a function
of ψ, too. In this sense ψ1 is considered as a parameter function of F12. Similar
considerations hold for the nonlinear operators F21 and F22, where the roles of ψ1,
ψ2 have to be interchanged.

Now the output of the two port is given by some φ ∈ L2 (−π, π)2. On the
other side having two response functions on each port at our disposal how they are
related to the ouput function φ?

For this purpose we assume that the responses superimpose additively such that
the output at port one is given as φ1 = F11 (ψ) +F12 (ψ) and similarly at port 2 as
φ2 = F21 (ψ) + F22 (ψ). Hence the output spectrum b = φ̂ ∈ l2 (Z)2 of the two
ports is given by

b =

(
φ̂1

φ̂2

)
=

(
F̂11 (ψ) + F̂12 (ψ)

F̂21 (ψ) + F̂22 (ψ)

)
. (3)

To proceed we introduce the scattering operator from the last Subsection 1.1 in its
most general form as defined in Example 1.5.

For that purpose we assume that ψ1 ∈ dom
(
Sc1F11(·,ψ2)

)
∩ dom

(
Sc1F21(·,ψ2)

)
and ψ2 ∈ dom

(
Sc2F12(ψ1,·)

)
∩ dom

(
Sc2F22(ψ1,·)

)
and write mij = m

cj
Fij

(ψj),
i, j = 1, 2, for the modified scattering sequences. Thus by the definition of the
corresponding one port scattering operators we obtain frem Equation 3

b =

(
Sc1F11(·,ψ2)ψ̂1 − c1m11 + Sc2F12(ψ1,·)ψ̂2 − c2m12

Sc1F21(·,ψ2)ψ̂1 − c1m21 + Sc2F22(ψ1,·)ψ̂2 − c2m22

)

=

(
Sc1F11(·,ψ2) Sc2F12(ψ1,·)
Sc1F21(·,ψ2) Sc2F22(ψ1,·)

)(
ψ̂1

ψ̂2

)
−
(
m11 m12

m21 m22

)(
c1

c2

)
= ScF (ψ) a−M c

F (ψ) c.

Here a =

(
ψ̂1

ψ̂2

)
is the input spectrum, c =

(
c1

c2

)
is the vector of mean values,

ScF (ψ) is the scattering operator of ψ described by an operator valued matrix 2×2,
and M c

F (ψ) is the 2 × 2 Matrix of scattering sequences for the two port. Should
it be the case that SF11 resp. SF21 is well-defined for ψ1 or SF12 resp. SF22 is
well-defined for ψ2 the corresponding formulas can be obtained by setting c1 or c2

to zero. This means that c1, c2 = 0 has the special meaning that ψ1 or ψ2 is in the
domain of the unmodified scattering operator irrespective of the fact if their mean
value is zero or not. This interpretation is now always used from know on.
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Consequently we arrive at the following definition of the two port scattering
operator.

Definition 1.6. Let a, b, c and F be defined as before. Set

dom (ScF ) = {ψ ∈ dom (F) | ψ1 ∈ dom
(
Sc1F11(·,ψ2)

)
∩ dom

(
Sc1F21(·,ψ2)

)
and

ψ2 ∈ dom
(
Sc2F12(ψ1,·)

)
∩ dom

(
Sc2F22(ψ1,·)

)
}

Then the two port scattering operator is defined as the following map into equiva-
lence classes of operators valued matrices

ScF :

dom (SF )→M2

(
∪x∈l2(Z)πx

)
ψ 7→


[
Sc1F11(·,ψ2)

]
∼

[
Sc2F12(ψ1,·)

]
∼[

Sc1F21(·,ψ2)

]
∼

[
Sc2F22(ψ1,·)

]
∼


and the following relation between input spectrum a and output spectrum b is valid

b = ScF (ψ) a−M c
F (ψ) c,

where M c
F (ψ) denotes the 2× 2 matrix of scattering sequences

M c
F (ψ) =

(
mc1
F11

(ψ1) mc2
F12

(ψ2)

mc1
F21

(ψ1) mc2
F22

(ψ2)

)
.

As usual we omit the explicit notation of equivalence classes. The operators in
the scattering operator can always be choosen as convolution operators and as such
can be represented by the bi-infinite Laurent matrices. Hence two port scattering
matrices are representable in block Laurent form.

1.2.1 Nonlinear Scattering in One Dimension

A system which leads to a nonlinear two port formulation is provided by the non-
linear wave equation

−ψ′′ + V (x, ψ) = K2ψ (x) (4)

which describes the interaction of a time-harmonic scalar wave, e−iωtψ (x), in
one dimensional quantum mechanics described by the Schrödinger equation with
non linear interaction. Here a prime denotes differentiation with respect to x, ψ
is a possible complex valued function, K denotes the wavenumber, and V (x, ψ)
denotes the interaction.

In particular we consider the nonlinear point interaction defined by

V (x, ψ) = v (x, ψ)ψ,

v (x, ψ)ψ = f (|ψ (x)|) δ (x− c) ,
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where f : R→ C is a continuous function and c ∈ R is the location of the nonlinear
singularity. The solution of the nonlinear Schrödinger equation (NLSE) 4 is given
by

ψ (x) =

{
a1e

iKx + b1e
−iKx for x < c,

b2e
iKx + a2e

−iKx for x > c,

with complex coefficients a1, b1, a2, b2 and the transfer matrix T (a1, b1) connect-
ing the pair a1, b1 to a2, b2 is known to be of the form [1]

T (a1, b1) =

(
ge2icK 1 + g
1− g −ge−2icK

)
, (5)

where g = g (a1, b1) = i
2K f (|z|) and z = a1e

2icK + b1. With the help of 5 we
obtain that z satisfies also the following nonlinear equation

z =
a

1 + i
2K f (|z|)

, (6)

where a = a1e
2icK +a2, showing that z = z (a1, a2) and after some manipulations

involving Equations 5 and 6 we get

b1 (a1, a2) = z (a1, a2)− a1e
2icK (7)

b2 (a1, a2) = (z (a1, a2)− a2) e−2icK. (8)

For example, assume that f is given by a Kerr nonlinearity, f (x) = ζx2, where we
take the coupling constant ζ ∈ R \ {0} for simplicity. Then it can be shown that
Equation 6 admits the unique solution

z (a1, a2) = a
(
u− sign (ζ) i

√
u (1− u)

)
, (9)

where a is defined as above after Equation 6 and if C = ζ|a|2
2K 6= 0

u =
1

C

((
1

18

) 1
3

u0 −
(

2

3

) 1
3 1

u0

)
, (10)

u0 =
(

9C +
√

3 (4 + 27C2)
) 1

3
.

In the case C = 0 we have to set u = 1.
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Figure 4: Functions in the Definition of z (a1, a2)
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The next figures show a visualization of z (a1, a2), b1 (a1, a2) and b1 (a1, a2)
on the torus. This is achieved by setting a1 =

√
pEeiθ1 and a2 =

√
1− pEeiθ2 for

some constants 0 < p < 1 andE > 0. In the 3D visualization the smaller radius of
the torus is given by

√
min (p, 1− p)E and the greater one by

√
max (p, 1− p)E.

Here complex numbers are coded by the following color scheme. The hue repre-
sents the phase of complex numbers and the brightness of the corresponding color
encodes their absolute value. Black corresponds to zero. The free parameters were
set to K = 2, c = 5, and ζ = 3.

Figure 5: Color Code of Complex Numbers

Figure 6: Complex Scattering Functions for NLSE, K = 2, c = 5, and ζ = 3
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Figure 7: Complex Scattering Functions for NLSE, K = 2, c = 5, and ζ = 3

1.2.2 The Scattering Matrix for the NLSE

I principle a nonlinear scattering matrix for Equations 7, 8 could be derived by
brute force comparism. However this would not take into account the fact that due
to the defining relation b (a) = S (a) a, a ∈ C2 not all information contained in the
matrix S is needed to obtain b1, b2 since these are already obtained by evaluation
at the parameter a of S. Moreover any systematic method for construction a scat-
tering matrix from the knowledge of b (a1, a2) should give us the usual scattering
matrix in the linear case. This is made more precise in the following lemma.

Lemma 1.7. Suppose that Ω is a domain in C2 containing 0 and b : Ω\{0} → C2

a vector valued function. Let be a ∈ Ω with a1, a2 6= 0.
Then there are matrices S0, D and N depending on a, s. t. D is diagonal,

a ∈ ker (N), and S = S0 +D +N . Consequently the redundant part is given by
N . S0 and D are explicitely obtained by

S0 =
(
b(a1,0)
a1

b(0,a2)
a2

)
, (11)

D = diag(a)−1diag (∆b) where (12)

∆b = b (a1, a2)− b1 (a1, 0)− b2 (0, a2) , (13)

i.e. these matrices are determined by the output function b. Morover S0 = S,
∆b = 0 and N = 0 if b = Sa for some constant matrix S ∈M2 (C).
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Thus using Equations 11 and 12 together with Equation 13 we obtain

S (a) := S0 +D

=

( z(a1,a2)−z(0,a2)
a1

− e2icK z(0,a2)
a2

z(a1,0)
a1

e−2icK
(
z(a1,a2)−z(a1,0)

a2
− 1
)
e−2icK

)
. (14)

A quick check shows that this matrix applied to a produces the expressions on the
right side given in Equation 7 and 8 and can be used as scattering matrix in canon-
ical form, i.e. which is determined by the three output measurements b (a1, 0),
b (0, a2), and b (a1, a2) .

Remark 2. Observe that the term redundant has only a precise meaning with respect
to the properties we require for the scattering matrix, e.g. if we require as in the
last lemma that it should be determined only by the output measurements we can
omit N . However if we require further properties as for instance continiuity for
zero inputs we can take advantage of the additional degree of freedom to add some
appropriate matrix N to obtain the required property.This is done in the following
subsection.

1.2.3 Extension of the NLSE Scattering Matrix to Zero Inputs

As long as we are concerned with Equation 7 an 8 which make also sense on
(C× {0}) ∪ ({0} × C) the matrix function a 7→ S (a) could be extended in a
trivial but rather arbitrary way to be compatible with these equations. However
this can be also achieved in a unique way by continuity.

To be more precise we are looking for a continuous representative in the equiv-
alence class of S (a). Such an extension is important, because it defines also the
zero-th order term in a perturbation expansion of the scattering matrix.

For that purpose we define

f :
R→ D
t 7→ u (t)− sign (t) i

√
u (t) (1− u (t))

,

where the function u is defined as in Equation 10 and D is the unit disk in C.
Observe that f , f ′, and 1

2f
′′ map into the unit disk D as can be recognized from the

following figures.
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Figure 8: Absolute Value and Argument of the Function f , f ′, and f ′′

Figure 9: Phase Space Plot of the Function f , f ′, and f ′′
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Next recall that C : C2 → R is given by C (a1, a2) =
ζ|a1e2icK+a2|2

2K . Then
with the function h : C2 → D, h = f ◦ C, we can write by the definition of z in
Equation 9 and since sign (C (a1, a2)) = sign (ζ)

z (a1, a2) =
(
a1e

2icK + a2

)
h (a1, a2) implying

z (a1, 0)

a1
= e2icKh (a1, 0) and

z (0, a2)

a2
= h (0, a2) .

Since lima1→0 h (a1, 0) = lima2→0 h (0, a2) = 1 it follows that lima1→0
z(a1,0)
a1

=

e2icK and lima2→0
z(0,a2)
a2

= 1, in particular this means that z is a partially holo-
morphic function at the origin of C2. Unfortunately this cannot be extended to
values a1, a2 6= 0 because the limits lima1→0

∆z(0,a2)
a1

= lima1→0
z(a1,a2)−z(0,a2)

a1

and lima2→0
∆z(a2,0)

a2
= lima2→0

z(a1,a2)−z(a1,0)
a2

do not exist. This is already indi-
cated in the following plot for the first difference quotient where the dependence on
the phase of a1 for small a1 becomes clearly visible and is actually caused by the
nonanalytic form of the Kerr nonlinearity. To identitfy the terms which cause this

Figure 10: First Difference Quotient for small a1, K = 2, c = 5, and ζ = 3
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phase dependence in the difference quotients one has to apply a Taylor series ex-
pansion in the sense of the Wirtinger calculus for h (a1, a2) at a1 = 0 resp. a2 = 0
up to a second order remainder term. This shows that we have to add the following
matrix

N (a) =

(
− ζ

2K
∂f
∂t (C (0, a2)) e−2icKa2

2
a∗1
a1

ζ
2K

∂f
∂t (C (0, a2)) e−2icKa∗1a2

ζ
2K

∂f
∂t (C (a1, 0)) e2icKa1a

∗
2

ζ
2K

∂f
∂t (C (a1, 0)) e2icKa2

1
a∗2
a2

)

to the scattering matrix S (a) to obtain a regularized scattering matrix with com-
ponents

Sr
11 (a) = (h (a1, a2)− 1) e2icK + a2

∆h (0, a2)− ζ
2K

∂f
∂t (C (0, a2)) e−2icKa∗1a2

a1
,

Sr
12 (a) = h (0, a2) +

ζ

2K

∂f

∂t
(C (0, a2)) e−2icKa∗1a2,

Sr
21 (a) = h (a1, 0) +

ζ

2K

∂f

∂t
(C (a1, 0)) e2icKa1a

∗
2,

Sr
22 (a) = (h (a1, a2)− 1) e−2icK + a1

∆h (a1, 0)− ζ
2K

∂f
∂t (C (a1, 0)) e2icKa1a

∗
2

a2

for all a1, a2 > 0, which can now continuously extended to (C× {0})∪({0} × C)
by setting

Sr (0, 0) =

(
0 1
1 0

)
,

Sr (a1, 0) =(
(h (a1, 0)− 1) e2icK 1

h (a1, 0)
(
h (a1, 0) + C (a1, 0) ∂f∂t (C (a1, 0))− 1

)
e−2icK

)
,

Sr (0, a2) =((
h (0, a2) + C (0, a2) ∂f∂t (C (0, a2))− 1

)
e2icK h (0, a2)

1 (h (0, a2)− 1) e−2icK

)
.

Remark 3. Obviously by construction Sr (a) a = b (a) for all a ∈ C2. Moreover
it is easy to check that the X parameters are connected to the linearization of the
matrix Sr (a), e.g. if a2 is considered as the large signal Sr

11 (a) defines the first
XS parameter for b1 and Sr

12 (a) defines after multiplication with a2 the XF pa-
rameter and the factor of a∗1 defines the XT parameter for b1, Sr

21 (a) contains no
information about any X parameters and is simply needed to cancel out terms, and
finally Sr

22 (a) contains all information about X parameters for b2.

Remark 4. For the NLSE we can define the two port operator F by dom (F) =

L2
(
−π

K ,
π
K

)2 with F (ψ) =
(
Sr
ij

(
〈ψ̂1, δ1〉, 〈ψ̂2, δ−1〉

)
ψj

)
i,j=1,2

, where 〈·, ·〉 de-

notes the scalar product in l2 (Z).Then the scattering operator for F is given by
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dom (SF ) = L2
(
−π

K ,
π
K

)2 and SF (ψ) =
(
Sr
ij

(
〈ψ̂1, δ1〉, 〈ψ̂2, δ−1〉

)
δ0∗
)
i,j=1,2

as expected.

1.3 Conclusion

We suggested an extension of the nonlinear large signal scattering S parameters
which were defined in frequency domain in a finite dimensional setting ( [1] [2],
[3], [4],). On the contrary we tried to start in time domain and supposed that there
is some nonlinear operator which gives the relation of input (periodic stimulus)
and output states (periodic steady state) of the system. In the most general case
this could be thought as the solution operator to some ordinary nonlinear differen-
tial (ODE) or differential algebraic equation (DAE). How the scattering operator
relates to the particular form of the ODE or DAE was not investigated in this article
and has to be investigated in the future.

Now in this setting it possible to relate a nonlinear scattering operator to the
periodic steady state and to the perturbed periodic steady state obtained by a per-
turbation of the periodic stimulus regardless if the perturbation is small or not. As
was demonstrated in the case of the nonlinear Schrödinger equation with Kerr non-
linearity the scattering operator can be even defined for arbitrary input states. Con-
sequently this means that changes in the output spectrum are intimately connected
with changes in the nonlinear scattering operator which demands for a perturbation
theory of the nonlinear scattering operator, which seems to be not well developed
in the literature.

Nonlinear scattering operators are determined by a scattering sequence or in the
multiport case by a set of scattering sequences and given as convolution operators
or block convolution operators meaning that much less data would be needed to
determine the nonlinear scattering operator. This is somehow unspected from the
work given in [2], [3], [4], but should be connected to the nonuniqueness of the
nonlinear scattering operator and the appearance of the operator N . Therefore it is
important to know if the solutions of ODEs, resp. DAEs are in the domain of the
scattering operator defined in this article.

For the nonlinear Schrödinger equation with Kerr nonlinearity we showed how
the nonlinear scattering matrix in frequency domain could be derived from a given
set of nonlinear equations in frequency domain. Moreover this matrix was continu-
ously extended such that a linearization of the scattering matrix can be carried out.
It is currently an open questions, how this procedure could be done for more ports
or frequencies.
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